AWS anuncia nuevas capacidades de Amazon SageMaker

Amazon Web Services (AWS), una empresa de Amazon, anunció ocho nuevas capacidades para Amazon SageMaker, su servicio de Machine learning (ML) end to end.

Los desarrolladores, científicos de datos y analistas de negocios utilizan Amazon SageMaker para crear, entrenar e implementar modelos de ML de forma rápida y sencilla mediante el uso de infraestructura, herramientas y flujos de trabajo completamente administrados. A medida que los clientes continúan innovando con ML, están creando más modelos que nunca y necesitan capacidades avanzadas para administrar de manera eficiente el desarrollo, el uso y el rendimiento de estos modelos. El anuncio de la compañía incluye nuevas capacidades de gobernanza de Amazon SageMaker que permiten la visibilidad del rendimiento del modelo a lo largo del ciclo de vida del ML.

Las nuevas capacidades de Amazon SageMaker Studio Notebook, por ejemplo, brindan una experiencia de bloc de notas mejorada que permite a los clientes inspeccionar y abordar problemas de calidad de datos con solo unos pocos clics, facilitar la colaboración en tiempo real entre los equipos de ciencia de datos y acelerar el proceso de pasar de la experimentación a la producción al convertir código del bloc de notas en trabajos automatizados.

La nube permitió el acceso a ML para más usuarios, pero hasta hace unos años, el proceso de creación, entrenamiento e implementación de modelos seguía siendo minucioso y tedioso, y requería una iteración continua por parte de pequeños equipos de científicos de datos durante semanas o meses antes de llegar a un modelo listo para producción. Amazon SageMaker se lanzó hace cinco años para abordar estos desafíos y, desde entonces, AWS ha agregado más de 250 funciones y capacidades nuevas para facilitar a los clientes el uso de ML en sus negocios.

En la actualidad, algunos clientes emplean a cientos de profesionales que utilizan Amazon SageMaker para realizar predicciones que ayudan a resolver los desafíos más difíciles y así mejorar la experiencia del cliente, optimizar los procesos comerciales y acelerar el desarrollo de nuevos productos y servicios. A medida que ha aumentado la adopción de ML, también lo han hecho los tipos de datos que los clientes quieren usar, así como los niveles de control, automatización y calidad que los clientes necesitan para respaldar el uso responsable del ML. Estas nuevas capacidades, se basan en la historia de innovación de Amazon SageMaker para apoyar a profesionales de todos los niveles de habilidad alrededor del mundo.

Nuevas capacidades de gobernanza de ML en Amazon SageMaker

Amazon SageMaker ofrece nuevas capacidades que ayudan a los clientes a escalar más fácilmente la gobernanza a lo largo del ciclo de vida del modelo de ML. A medida que aumenta la cantidad de modelos y usuarios dentro de una organización, se vuelve más difícil establecer controles de acceso con privilegios mínimos y establecer procesos de gobernanza para documentar la información del modelo (por ejemplo, conjuntos de datos de entrada, información del entorno de entrenamiento, descripción del uso del modelo y calificación de riesgo). Una vez que se implementan los modelos, los clientes también deben monitorear el sesgo y la desviación de características para garantizar que funcionen como se espera.

Notebooks de próxima generación

Amazon SageMaker Studio Notebook brinda a los profesionales una experiencia de bloc de notas completamente administrada desde la exploración de datos hasta la implementación. A medida que los equipos crecen en tamaño y complejidad, es posible que docenas de profesionales necesiten desarrollar modelos en colaboración utilizando blocs de notas. AWS continúa ofreciendo la mejor experiencia de bloc de notas para los usuarios con el lanzamiento de tres nuevas funciones que ayudan a los clientes a coordinar y automatizar el código de su bloc de notas.

Artículos relacionados

Back to top button